Search results for "evolutionary multi-objective optimization"
showing 4 items of 4 documents
IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization
2019
We propose a new interactive evolutionary multiobjective optimization method, IRA-EMO. At each iteration, the decision maker (DM) expresses her/his preferences as an interesting interval for objective function values. The DM also specifies the number of representative Pareto optimal solutions in these intervals referred to as regions of interest one wants to study. Finally, a real-life engineering three-objective optimization problem is used to demonstrate how IRA-EMO works in practice for finding the most preferred solution. peerReviewed
Hybrid evolutionary multi-objective optimization with enhanced convergence and diversity
2011
Synchronous R-NSGA-II: An Extended Preference-Based Evolutionary Algorithm for Multi-Objective Optimization
2015
Classical evolutionary multi-objective optimization algorithms aim at finding an approx- imation of the entire set of Pareto optimal solutions. By considering the preferences of a decision maker within evolutionary multi-objective optimization algorithms, it is possible to focus the search only on those parts of the Pareto front that satisfy his/her preferences. In this paper, an extended preference-based evolutionary algorithm has been proposed for solving multi-objective optimiza- tion problems. Here, concepts from an interactive synchronous NIMBUS method are borrowed and combined with the R-NSGA-II algorithm. The proposed synchronous R-NSGA-II algorithm uses preference information provid…
Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm
2019
We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. We are motivated by practical applicability and focus on two main challenges faced by practitioners in industry: 1) meaningful formulation of the optimization problem reflecting the needs of a decision maker and 2) finding a desirable solution based on a decision maker’s preferences when solving a problem with computationally expensive function evaluations. For the first challenge, we describe the procedure of modelling a component in the air intake ventilation system wi…