Search results for "evolutionary multi-objective optimization"

showing 4 items of 4 documents

IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization

2019

We propose a new interactive evolutionary multiobjective optimization method, IRA-EMO. At each iteration, the decision maker (DM) expresses her/his preferences as an interesting interval for objective function values. The DM also specifies the number of representative Pareto optimal solutions in these intervals referred to as regions of interest one wants to study. Finally, a real-life engineering three-objective optimization problem is used to demonstrate how IRA-EMO works in practice for finding the most preferred solution. peerReviewed

Mathematical optimization021103 operations researchOptimization problemComputer sciencemieltymykset0211 other engineering and technologiesReservation02 engineering and technologyInterval (mathematics)interactive methodsMulti-objective optimizationmonitavoiteoptimointievolutionary multi-objective optimization0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingregion of interestreference point
researchProduct

Hybrid evolutionary multi-objective optimization with enhanced convergence and diversity

2011

interactive evolutionary multi-objective optimizationNSGA-IIdifferential evolutionevoluutioalgoritmitPIEmultiple criteria decision makingmuuttujathybridialgoritmitmonitavoiteoptimointiEMO-algoritmitPareto-optimitNAUTILUS methodmutationhybrid frameworkachievement scalarizing function
researchProduct

Synchronous R-NSGA-II: An Extended Preference-Based Evolutionary Algorithm for Multi-Objective Optimization

2015

Classical evolutionary multi-objective optimization algorithms aim at finding an approx- imation of the entire set of Pareto optimal solutions. By considering the preferences of a decision maker within evolutionary multi-objective optimization algorithms, it is possible to focus the search only on those parts of the Pareto front that satisfy his/her preferences. In this paper, an extended preference-based evolutionary algorithm has been proposed for solving multi-objective optimiza- tion problems. Here, concepts from an interactive synchronous NIMBUS method are borrowed and combined with the R-NSGA-II algorithm. The proposed synchronous R-NSGA-II algorithm uses preference information provid…

ta113Mathematical optimizationinteractive multi-objective optimizationApplied MathematicsEvolutionary algorithmApproxDecision makerMulti-objective optimizationscalarizing functionSet (abstract data type)Pareto optimalevolutionary multi-objective optimizationpreference-based evolutionary algorithmsFocus (optics)Preference (economics)Information SystemsMathematicsInformatica
researchProduct

Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm

2019

We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. We are motivated by practical applicability and focus on two main challenges faced by practitioners in industry: 1) meaningful formulation of the optimization problem reflecting the needs of a decision maker and 2) finding a desirable solution based on a decision maker’s preferences when solving a problem with computationally expensive function evaluations. For the first challenge, we describe the procedure of modelling a component in the air intake ventilation system wi…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemProcess (engineering)Computer sciencemedia_common.quotation_subjectmultiple criteria decision makingEvolutionary algorithmoptimal shape designpreference information0102 computer and information sciences02 engineering and technology01 natural sciencesComponent (UML)0202 electrical engineering electronic engineering information engineeringBaseline (configuration management)Function (engineering)Preference (economics)media_commonpareto-tehokkuusilmanvaihtojärjestelmätmetamodelsmonitavoiteoptimointikoneoppiminen010201 computation theory & mathematicsevolutionary multi-objective optimizationcomputational costs020201 artificial intelligence & image processingmuotoProceedings of the Genetic and Evolutionary Computation Conference
researchProduct